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Abstract

-"Necessary and sufficient conditions for identifiability of the
diffusion coefficient in Galerkin approximations to a two point
boundary value problem are derived for various choices of Galerkin sub-
spaces. The results are further used to investigate output least squares

t squares stability of the diffusion co-

identifiability and output leas
R . /

efficient. 7T 2 YVNSSEN
,/A\\

f
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Key Words: Parameter estimation; stability of output least squares

problem, boundary value problem.
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Identifiability Under Approximation for an

Elliptic Boundary Value Problem

L et g o

1. Introduction

x In this note we study the following boundary value problems:

-(aux)x +cu=f in (0,1
(1.1)

u (0) - ux(l) = 0.
Let I=(0,1) and f € L3(I). Recall that if a € HI(I) with a(x) >
a>0 and c € LZ(I) with c(x) > ¢c >0 a.e., then there exists a
unique solution u = u(a) of (1.1) in Hz(I). We are concerned with
the identification of the coefficient a, given information of the solu-
E tion u(a) and in particular we will study the injectivity of the mapping
- aM -+ uN(aM) where aM is some approximation to a and uN an approxi-
mation to u. At first we describe the problem in a more general context.

Let ¥: HZ(I) + Z be a continuous linear operator from the solution

space to the observation space Z describing the type of available
information of the state u. To determine the coefficient corresponding

to an observation z € Z of the system that is modelled by (1.1) the

following output least squares formulation is used frequently:

(1.2) minimize [Zu(a) - zlg.
Qad

PR A B I BN

Here the set Qad of admissible parameters is chosen such that the

existence of a solution of (1.2) is guaranteed.

TR 4, 8,4, 0,
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~
For example, if n observations {zk}:_l taken at the points
" {xk}]':=1 are available, we may take Z = R" with & HZ(I) +R" de- .

fined by %u = {u(xk) }:zl' In this case (1.2) becomes

n
(1.3) minimize § fu(x,;a) - z,|2
K k
q ke

Alternatively one might have distributed observations z € LZ(I), or

using the data {zk}: at {xk}:sl one might want to obtain a function

z € LZ(I) either by interpolation or least squares regression; for ¥

% we would then take %u = u and the optimization problem becomes
j coe . 2

\ (1.4) minimize |u(a) - z| )

» Qad L

In either case an appropriate choice for Qa d would be

, 4
\]

1
Qq ={a€H: a(x) >2a>0, lalHI < 6},

NV T
. .

with vy > a, [6].

Y -

Defining the attainable set 9= {£i(a): a € Qad} one may view

e

NAEMEAEEL NN
) . i HE ST M T

the optimization problem (1.2) as having two parts:

(i) given z € Z find : ., the projection of z on %,

proj
(ii) given Zpr0j find a € Q4 such that Yu(a) - Zoroj "
Assuming the existence of zproj’ the uniqueness of zproj depends

on the geometry of 2. In (ii) there exists an a such that %Zu(a) =

zprOj by definition of Qad’ The question of uniqueness of such an a

arises and it is guaranteed if ¢: a +» Zu(a) is injective at a.




Injectivity of ¢ at a is called identifiability of a at a. The

above mentioned uniqueness problems are rather involved in general, see,
e.g., [2; 7, Appendix], and [11] for a hyperbolic equation.

When solving (1.2) on a computer it is necessary to replace (1.1)-
(1.2) by a finite dimensional problem. This is done by approximating both
the solutions of (1.1) and the set Qad by functions from finite dimen-
sional function spaces. A finite dimensional version of the minimiza-
tion problem (1.2) is then solved to obtain an estimate for the unknown
coefficient a (compare e.g., [1], [5]). Again the existence and unique-
ness questions analogous to the two steps (i) and (ii) above can be con-
sidered.

The main purpose of this investigation is the study of the uniqueness
for the finite dimensional analog of (ii). If for a chosen approximation
of a by aM the mappings aM -+ uN(aM) is injective at EM, then a is

called identifiable under approximation at EM. The related question

for parabolic equations in dimension one has been treated in [4].

Our results below indicate that the injectivity of a™ depends
upon certain rank conditions that imply compatibility conditions upon
the spaces used to approximate the coefficient a and the solution u(a).
? It will be seen that a may be identifiable under approximation without

the known sufficient conditions for identifiability of a in (1.1) being

satisfied [9). The results here, although depending on the choice of Neumann

boundary conditions can easily be adapted to different boundary conditions.
In section 2 we formulate the discrete problems and give general con-

ditions for identifiability under approximation. In section 3 we examine

several concrete examples and obtain necessary and sufficient conditions
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for identifiability under approximation for these cases. Identifiability
will be guaranteed if there is a sufficient amount of movement in the
observations. On the other hand, if the coefficient is assumed to be

known at points where the observations are stationary, then it can still

be identifiable at the remaining parts of the domain (0,1). Section 4 is

.

devoted to the problem of continuous dependence of the solution of the des-
cretized version of (1.3) or (1.4) on the observation z and Qad' Sufficient
conditions for output least squares identifiability (OLSI) [2] and output
least squares stability (OLSS) [3] are given. Finally, in section 5 we

report the findings of a numerical experiment that supports the practical

relevance of our results.
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2. Basic Results

To approximate (1.2) by the standard finite element method [10]
let {Bi}?=0 and {¢j}?=1 be sets of linearly independent functions
defined on I with Bi € Hl(I) and ¢j piecewise continuous. Let
AM = span{¢j: j=1,...,M and HN = span{Bi: i=0,...,N}. Setting

N M
D - Y u.B, and L Y a¥¢.

. i
i=0 !

we have upon integration by parts of (1.1) with u replaced by uN:

N N

iZO S WL S iZo

ui<cBi,B >=«<f,B,> for k =0,...,N,

k k

where <-,°> denotes the inner product in Lz. Replacing & by aM it

follows that
N M N
T ou § atvs.s, B >+ 1 W.<cB,,B> = <f,B>,
i=0 * j=1 3 I LXK j=0 * 1

for k= 0,...,N.

Rearranging the summations in this last expression we arrive at

M N N
(2.1) Y a. Y<¢.B, ,B >u. + Y <cB ,B>u, = <f,B>
j=1 J jop I 1sx k,x "1 5120 i’k "i k

for k=20,...,N.

We now make the following definitions: Hj and K are (N+1) X (N+1)

matrices with the (i,k)-th elements given by




..............
............................................

(Hj)i,k = <¢.B > and (K)i,k = <CBi’Bk>’

j i,x’Bk,x

for i,k = 0,...,N; j = 1,...,M. Similarly fe€R"}, i €R™! and

Me lRM are given by

~ -~ -~ M
(By = <£B>, (@, = v, and @) = aj.

j: With this notation (2.1) becomes

M L d

: (2.2) T aH.fe ki = F,

: 2y 33

j=

h where we used the symmetry of Hj and K. Thus we obtain a mapping

N ™ - ﬁ('iM) from R into RV or, equivalently, al -+ uN(aM),

&

- M

) aM = 2 a?¢j, from AM to HN, that is well defined as long as
W :
Y a}ﬁ-i + K is invertible. For example, if ¢ > 0 and (B, }r.‘_o
j=1 jJ M - i,x 1=
are linearly independent, then 2 ab.’H. + K is invertible for all

j=1

M
Mea-(@Mer ) @h.6. >0 on 1.
j=1 J)




Similarly, if ¢ >y > 0 as assumed throughout, then again Zaiﬂi + K
is invertible for all 3 € A.

We now define identifiability of aM - col(ai‘,...,a;‘) in (2.2).

Definition 2.1. The parameter ;M € A in (2.2) is called identifiable

if 5@E™ = 3" implies = tM for a11 tMe A.
For a specific choice of approximation of a in (1.1) by aM, we

M M
say that a is identifiable under approximation at a if a is

identifiable.

Theorem 2.1. Let {¢J. }?=0 and {Bi}rz___0 be linearly independent,

¢(x) >c>0 and & €A. Then a' €A is identifiable if and only if

the vectors {HJ.{](EM) };{=1 are linearly independent.

Proof. Using (2.2), linear independence of Hjﬁ(iM) clearly implies

E:ﬁ identifiability of EM. Conversely assume that there exists a nontrivial

\ vector (a;,...,ay) €IRM with

-

g (2.3) 1 o.Hdi(a) = 0.

b i=1 3

- J

-

- MM -M

lo Then § (aj - eaj)¢j > 0 for some sufficiently small ¢ > 0 and a,

- given by (Ez’)j = a? - eaj satisfies Ehld € A. Multiplying (2.3) by €

. ~

. and subtracting it from (2.2) we find that ﬁ(EM) = ﬁ(aT). This ends

s

o the proof.

. Since HJ.: IRM1 -*]RNH, for j =1,...,M, we have the following:

Corollary 2.1. If M > N+l, then a" in (2.2) is not identifiable.

e T T e T e e e e
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Corollary 2.2. If ﬁ(EM) € Ker(Hj) for some j =1,...,M, then M

is not identifiable.

Proof. 1If ﬁ(EM) € Ker(Hj) then the set {Hjﬁ(EM)}?gl is linearly

dependent and the result follows from Theorem 2.1.

Remark 2.1. Corollary 2.2 should be compared with the condition
luxl > k; > 0 which is known to be a sufficient condition for identifi-

ability of a in the infinite dimensional problem (1.1) [9].

~

Definition 2.2. The coordinates {5? }r=1, M < M, of the parameter vector

k LY -~
Me A are called identifiable if fH(a™ = fi(t™) and sg’ - b';‘ for
all j # 3., k=1,....,4 imply e tM for ann e A
L i M . M . o
Proposition 2.1. The coordinates {5 }k ) of & € A are identifiable
Ix

if and only if the vectors {Hj ﬁ(éM)}:_l are linearly independent.
" =

The proof is obvious from that of Theorem 2.1.

R S R S SR STC RS '_ ................................... o e e e . ..
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3. Several Examples

In this section we consider several concrete examples and determine
their identifiability properties. We point out that here we use N to
denote the number of subintervals of I and N and M of the previous

section are a function of this N.

Case 1. Let I be partitioned into N subintervals of length 1/N.

For i =0,...,N define the linear spline basis functions

Nx-i+1, IT'I-i X i% R
(3.1) B,(x) =4 -Nxsivl, pecxci,
L 0 otherwise,

and for j =1,...,N the 0-th order splines

1, L;—1<x<%,
(3.2) $.(x) =
J ] otherwise.
Thus N and M of the previous section are both N here.
We approximate the solution u of (1.1) by linear splines and

the coefficient a by constant splines. It is straightforward to com-

pute the (N+1) x (N+1) matrices Hj’ jo=1,...,N:

..............

---------------------
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1
( : i
0. - - - SR l
. * 0 o . ° :
H, = N 1 -1 . -1,
J . )
-1 1 Q .J
. . . o °.~.' :
L’ e 0...‘0 ‘

~ ~.

Let {i = u(EM) = col(uo,...,uN) with aM € A. Then

[ 0 )
I
0
H.~ = N . - . ..I.-
34 Mio1 T Y j-1
'uj-l + UJ- «J
0
|
L 0 J

Now set Bj = uj - uj-l for j=1,...,N. To study the linear

independence of the vectors {Hjﬁ}?=1’ note that

(Hlﬁ’ D ’HNﬁ) = NB

where B is the (N+1) x N matrix
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[ -8, 0 o )
B, -8
oK 32\\
\ 8., O
l By-1 -y
| o 0 B, J

Lemma 3.1. The vectors {Hjﬁ}?gl are linearly independent if and

only if g #0 for all i=1,...,N.

Proof. It is easily shown that B is row equivalent [8] to

Qo —o

o
-

L 0 0 )

provided 8, # 0 for all i and {Hjﬁ}?=1 are linearly independent
in this case. Conversely, if Bi = 0 for some i, then the column rank
of B is less than N and linear dependence of {Hjﬁ}?=1 follows.
Theorem 3.1. In Case 1, EM is identifiable, if and only if ui(iM) ¢
M. (5M) for all i =1,...,N.
i-1

o . MM M . o .

Proposition 3.1. The coordinates {&, } of & are identifiable if

Jk k=1
. ~M 'UM -
and only if wu, (3) # u, 1(a ) for all k=1,...,M
Ix Ix”

-~

The intervretation nf thiec reanlt is that the narareter 5" can only be
identified at coordinates where the corresponding observations are non-

stationary.

B O T i i e TN Te e e et T e T T e, L

. - . -,
....... ., -
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Case 2. Let N be even and let I be partitioned into subintervals

of length i The functions Bi’ i=0,...,N, are taken as in (3.1).

N.
Here, however, we define the functions ¢J. for j=1,..., % by

1’ &%’lix(ﬁ

- N 4
¢j (X) =
", 0 otherwise.
h Thus M of section 2 is % now. We find in this case that the (N+1) x
(N+1) matrices Hj’ for j=1,..., % are given by
(0 0)
1 -1 0
H. =N -1 2 -1 ,
J .0 -1 1
[ 0 0

where the first entry of the nontrivial submatrix is in the 2j-2, 2j-2

position of Hj' With {§ = ﬁ(iM) = col(uo,...,uN) as before we have

M2j-2 T M25-1

Hib = N) =Mpy2 * Mg500 = My |
M25-1 " P25
0
l 0 J
R
P -
T e L e R e L L




v,

|

2
3
&
y
b

.
b
|
N
)
>

where the first nonzero entry occurs in the 2j-2 coordinate. Setting

Bi = UM for i =1,...,N we thus have

for j=1,..., N

5. To investigate the linear independence of {Hjﬁ}?{z,

note that
(Hlu,...,HN/zu) = NB

where the (N+1) x E--matrix B is given by

2
(
81'82 o
B2 ‘83
p=| O B3-B4 ,
Ba
0 0
BN-l
BN-1'BN
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and the collection of vectors {Hj'ﬁ};‘f= 21, is linearly independent if and

only if rank(B) = %

Lemma 3.2. In the Case 2 the vectors {Hjﬁ}?g are linearly independent

if and only if 621-1#0 or 821#0 for i=1,...,5.

Proof. The matrix B is row equivalent to

\
fel 0 0
0 B
B = 5 )
84 . e .
0 0
| fees
l 0 0 BN )

From this and the fact that the dimension of the column space of a matrix

is equal to the rank of that matrix, the result follows.

Theorem 3.2. In Case 2, EM is identifiable if and only if Mai_1 ¢

. N
Moj_2 OT Hog # LTI for i=1,..., 7

Case 3. Let I be partitioned into N subintervals of length %
Again we take the functions Bi’ i=0,...,N to be those defined in
(3.1). Further we set ¢i = Bi’ i=0,...,N, Thus M of section 2 is
N+1 here and both ¢j and Bi are linear splines defined on the same

mesh. In this case the structure of the (N+1) x (N+1) matrices {Hj)r.q_

Ce RRRRRANRE
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is slightly more complicated than in Cases 1 and 2. These matrices are

now given as follows:

[ 1 -1
| R
0 2

with the first entry in the (0,0)-element.

. o *
1 -1 0
a1 2 -1
0 1.0
) o)

For j =1,...,N-1 we have

o ]
(o) »
o |

where the first entry of the nontrivial submatrix appears in the (j-1,

j-1) position of Hj' Finally

t

where the first nonzero entry occurs

vectors {Hjﬁ}?zo are given by

-------

o

P R
......
.

~ St L e e TN AT T
o e e e .V.-‘.-__‘_",'., Vet e e,

in the N-

1, N-1 element. The
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where for j = 1,...,N-1

B.

1

4 - - Y r
(4y-Hp) T
¥17%
N . N
2 0 H =3
0 - (My¥y-1)
| UNTHN-1 J
' 0
0
. P-1 7Yy
YT T Mt By Yy
el 18!
0
. 0

e ppp——

the first entry occurs in row j

= UMy for i=1,...,N we have

N2
o

=?

"
o=z

( 0 )
0 ’
-BN
L By

T

Nz

-1.

16

Setting
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for j =1,...,N-1. To investigate the linear independence of {Hjﬁ}?=0

note that

N
3 B,

”~~
X
o
=
-
-
o o
=3
N
n

where the (N+1) x (N+1) matrix B is given by

(8, B 0 0 )
81 31'82
0 8,
B = 0
L X X 0
-BN_1 0
BN_1 - BN -BN
L 0 0 BN BN ‘

Performing row operations on B we find the B is equivalent to

0 0 0)

(- -2
]
o

r L ]

RAOGOAE ¢ MR A A
o
w

SR ARR L B
™
wm
rd

AT

TATAER TLTeT

A S
ooy,
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We then see that B has rank less or equal to N and therefore we have
Theorem 3.3. In case 3, EM € A is not identifiable.

If one decreases the number of ¢j's in Case 3 then it is reason-
able to expect that sufficient and necessary conditions for the identi-
fiability of iM in the spirit of Cases 1 and 2 can be obtained. We
verify this next for a particular choice of N and M. Moreover, in

Section S we present a numerical experiment which tends to support this

contention.

Case 4. Let I be partitioned into 2N subintervals of length 1/2N.

We choose the functions Bi for i=20,...,2N as

. . i
2Nx - i+1, fN_f-xiN"

; : i i+l
Bi(x) =€ -2Nx + iel, 3N <X <5
{ O otherwise.

For the functions ¢j we take

0 otherwise,

for j =0,...,N; thus M of section 2 is N+1. The (2N+1) x (2N+1)-

matrices {Hj}2=0 are given as follows:




el N N N e s R S N R o I 1

19

with 3 in the (0,0) element,

[ o ©)
1 -1 0 0 0
X a1 4 -3 0 0.
H, = N 0 -3 6 -3 o0 0O |,
J 210 45 o 3 4 -
0 o0 0 -1 1.
; o .
\ . J

where the first entry of the nontrivial submatrix occurs in the 2(i-1),

2(i-1)-element and

( 3\
o} O
N .
5 a1 . )

1A 0

(o] -1 4 -3

o0 -3 3
| )

Let @ = ﬁ(EM) = col(uo,...,uZN). Then we see that

b
)
"
b
>
»
.

PG (I
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S+ 4y -y, 0
H 1 = E - +* H 1 = E
(L S U ! » ONMF 3
0 HoN-2 ~ Man-1
“Hon-2 * dgnoy 7 Mgy
L 0 ‘ U =3Hgnoy * SHgy )

and for j =1,...,N-1

( 0 \

|

0

Hai-2 " H25.1

THajp * Mgy T My
Y

Hou = =1 =3up5 g * Ouyy - 3Mp54 |0

“3Upg * MMoia1 T Ha442

“Haie1 * Hoi42
0

where the first nonzero entry occurs in row 2(i-1). To investigate

3 3 N = -
the linear independence of {Hj“}jzo we put g, =, -y, , for
i=1,...,2N and observe that
~ ~ N
(HOU.---,HNU) = ? B
.\'. s :.._ e, KK "\- $r.'-'.--'\.:_ -ty :'.,_,-_ :-.\:: e ’ o J_'\,-.‘I ...... ARy -.._‘.:._- .:‘;_:.--:_-_:_..:_.. ............................... O
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where the (2N+1) x (N+1) matrix B is given by
[ -38, -8 0 W
38,-8, 8,38, O
B,  38,-38; By
0 38,-8,  By-38y
B, 38,38
- 0 388
Be T 0
0 “BoN-3
Bon-373B2N-2 0
Bon-27Bon-1 Banar
3Bon-1"B2n Boxn-173F2N
o 0 0 Bon B

Performing row operations on B we obtain an equivalent matrix B:

Bz 382 0

oo
"
-

»
e
L
>
2
.

e2N-3
38

38

2N-2

28-1 Bon-1

- v wmm—- V_“
. DRI
AN ". [

A
(Y

.....................................................................
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which is of dimension 2N x (N+1). The vectors Hjﬁ are linearly inde-

pendent if rank(i) = N+1,

Theorem 3.4. In Case 4, if ¥ai 4 ¥ Mog_g OF My ¥ Yos .y for all
i=1,...,N and ("21-1’“21-2)("21‘”2i-1) #0 for some i=1,...,N,
where | = ﬁ(EM), then 31 € A is identifiable.

N+1

Proof. Let &'-—-col(&o,...,&N) ER"' and B3 = 0. Choose i, such

1
that B, 'By; #0. Then a, , =a, =0. Further o, =0 for all
1 1 : 1 1
other i, since BZi-l #0 or BZi # 0. This implies linear independence

of the columns of B and thus of B. Theorem 3.1 then implies the result.

Theorem 3.5. In Case 4, if ¥ - 0 or

0~ ¥2 ¥ UN-1 T UN-2
- My~ Myog =0 0T Mpig - Maiip T Mg T Mail) T Maier T Mai T Wai42 C
Maie1 = 0 for some i = 2,...,N-2, where i = {i(3) then EM € A is not

- identifiable.

Proof. Under the assumptions of the theorem the column-rank of B is

not maximal and this implies the result.

Remark 3.1. Four consecutive zeros in the Bi‘s do not necessarily
imply nonidentifiability, provided the zeros start with an even index
and are not at the '"beginning" or "end" of the sequence {Bi}; in
particular B8,, = By, ., = Byi 0 = Byj,3 =0 with 2 < i <N-2 does
not imply nonidentifiability. For example let N = 5, B1 = 32 = 83 =

88 = Bg = 810 =1 and 84 = 85 = 86 = 87 = 0. Then {Hjﬁ}, j = 0,...,N,
M

]

with Bi = Ug-Mg g0 aTe linearly independent. Choosing Mo and @

we can thus calculate ui, i=1,...,2N and f such that EM is

identifiable and 821 = ,,,. =8 0.

2i+3 ©
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Remark 3.2. The conditions of Theorems 3.1 - 3.4 are conditions on the

variation of adjacent ui(EM)-values. If this variation is sufficient,

the identifiability of EM is guaranteed. The results indicate that

the larger the difference between the dimension of the state space approxi-
mation and the dimension of the parameter space approximation is, the

more likely it is that identifiability of the approximated coefficient
holds. In [9] identifiability of a in (1.1) is studied under various
conditions on the sign of u and Uy The most general condition im-
plying identifiability of a is i?f (max qul’ u,) > 0. Clearly one
can construct examples where this condition is not met but identifiability
~M

under approximation, e.g., according to one of the cases 1 - 4, of a

holds.
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4. Two Stability Concepts

In this section we discuss the application of two concepts of sta-

bility to the finite dimensional output least squares problem
(P:) minimize |uN(aM) - z|22 over C,

L
where C is a convex and closed subset of

M
M M M. M M M
Qg {a = jzl aj¢j. 8 €ER, a (x)>a>0, |a |H1 <v},

N

and uN(aM) = Z uiBi’ with col(uo,...,uN) = § satisfying (2.2). The
i=0

existence of a minimum a, of (P:) can easily be argued. The reason

for introducing the set C c Qad here is that for the first stability

concept, uniqueness of solutions of (P:) is required and this cannot be
guaranteed over all of Qad' Here we consider Hl-smooth approximating
coefficients, some remarks on L approximations are given further
below. We investigate the continuous dependence of a? on z and also

on Q:d when dealing with the second stability concept. For C c:Q':d

let 97(C) = {uN(aM): s € C} denote the attainsble set.

Definition 4.1. [2] The parameter aM in (2.2) is called output least

squares identifiable (OLSI) by (P:) over Cc Q:d, if there exists a
neighborhood Y of 27(C) such that for every z € é’ the problem (Pa)

has a unique solution a? depending continuously on z.

Let Ain €Q,q be such that {Hjﬁ(iM)} is linearly independent

j
for every aM - ? (EM)
j=1

.. €EA, .. As examples for such sets we can
J¢J inj P

...............
L B
R
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take neighborhoods in Q of points of identifiability in the sense
& ad

of section 2.

Theorem 4.1; Let Ainj be as just described. Then aM in (2.2) is OLSI
by (P:) over every closed convex subset C of Ainj’ provided that

diam C is sufficiently small and 2z is sufficiently close to the 27(C).
More precisely, (P:) has a unique solution aﬁ depending Lipschitz-

continuously on 2z as long as dist(z%1C)) is sufficiently small.

Proof. By ([2], Theorem 4) it suffices to show that aM -+ uN(aM) is
twice continuously Fréchet differentiable with aM - uNM(aM) injective
a

on C. This is equivalent to the existence of continuous first and

second order derivatives of M ﬁN(iM) with EM such that

M
) (EM).¢. -a¥eA . and injectivity of i (EM) for every aM e c.
j=1 3’3 inj M

Let ﬁ~M(5M;ﬁ) =1 and 1 M(i;ﬁ,i) = £ be the first, resp. second,

a a
derivative in directions h and (h,k). Then
(4.1) e -L7hny W)
and
(4.2) E=-tVak, H, f+chHD LELK),
i JitgM

where L = I ag’ﬂj + X and R = col(hy,...,h), k = col(ky,..., k),

- . ~  oxM
and the continuity assumptions follow. The injectivity of M(a ) 1is

a
guaranteed by linear independence of {Hjﬁ(ﬁM)}; this ends the proof.

To describe the second notion of stability we consider the case

M .
ad”’

C=4Q
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N N N 2 M
(P minimize |u (aM) - z|° over Qqg-

We study continuous dependence of local solutions of (P:)w on
w= (z2,0,6) €W, where W = Ho xR xIR. Here W is endowed with the
Hilbert-space product norm. We always assume 0 < a < y, so that Q:d

is not empty and solutions of (2.2) and (P:)w exist.

Definition 4.2. [2] The parameter aM is called output least squares

(OLS)-stable in Qrd at the local solution ag of (Pz) 0’ wo €W,
w
0 in W, a neighborhood

if there exists a neighborhood V(wo) of w

V(ag) of ag in H1 and a constant «k, such that for all w = (2z,a,Y) €

V(wo) there exists a local solution ar of (P:)w with ar € V(ag)

and for all local solutions a: € V(ag) of (P:)w we have

Iar - aMOIHl < k|w-w

0|1/2
W
w

Remark 4.1. In comparing OLSI to OLS-stability we observe the following

differences: OLSI requires uniqueness of the solutions of the minimiza-
tion problem, whereas for OLS-stability, uniqueness is not required, with
continuity being checked at each local solution. If OLSI holds, then

the solutions depend on the observations in a Lipschitz continuous way,
whereas OLS-stability only guarantees Holder continuous dependence.
Further, OLSI requires continuous dependence of the solutions on the

observation only, whereas OLS-stability involves continuous dependence on

the observations as well as on the admissible set Qad'
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Output least squares stability is proved by techniques that guar-
antee stability of solutions of abstract optimization problems with res-

pect to perturbations in the problem data, see [2] and the references

given there. Let M. span {¢j };‘=1 and let F(aM) be the Lagrange

functional associated with (P:):
N, M 2 M
Fa'y = [N - 212 - avg(ah,

* *
where A € C" xR and

g: AM x W+ CxR is given by

M | M
, |a

g0 = (a-a I:l -, we (e,

Note that a¥ € Q ,(w) if and only if ga¥,w) €k =c xR, with C_

and R_ the natural negative cones in C(I) and R. We shall fre-

- - ——— -y - v
A\ G rhOhach( ¢ RENINENLAAARAAS  SACNCAARAINGNA

e

quently drop the index w and write g(aM) and Q:d for g(aM,w)

-
T.

and Q::d (w).

TR &

Theorem 4.2. Let AM = spxm{¢j }?q be such that it contains the constant

linearly independent vectors in RV*! and |uN(

functions, let (zo,ao,yo) = wo €W with 0 < ao < YO and let

Mo ¥ oM N M

% a, = 'Zl(ao)j% be a local solution of (PM)WO’ If {Hju(ao)}jgl are
=

ay) - z| is suffici-
ently small, then aM is OLS-stable in Q:'d(wo) at the local solution

M

0 of (P

N
a M) 0
w
For the proof of this theorem the following lemma on the regularity
of the constraint set Q:’d will be required; its proof is quite similar

to that of Lemma 4.2 in [2] but will be included for the sake of com-

ST LY AT T

pleteness.
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e
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»
W

Q

o' ,'




LN A el g > P . Camars Caert o Pt R—r—— T P A e R A IR At St i I S J
PN AT et \WERMCANEAG A A N AN N e A - ST T T

28

Lemma 4.1. Let AM contain the constant functions. Then every aM €
di is a regular point, i.e., O € int{g(aM) +X(g M(aM)) -KleC xR, »
a

where # denotes the range of the mapping g M(aM).
a

Proof of Lemma 4.1. We need to show that

0 € int{g(a™ + g ,(a™MA" - c_ xR}
a

(4.3)

= int{a-a"-nMec , |aM|2 - Y2 s 20 aR
+ Hl 1 +

H

Me My,

where we used that g M(aM)hM = (-hM,2<aM,hM> l) . Llet (¢,r) €C xR
a H

with |(¢,1) Ime <8 and § >0 to be chosen sufficiently small.
Note that ¢ - min ¢ € C4, and min ¢ GAM. In view of the first com-

ponent in (4.3) we decompose ¢ as
¢=a-aM- (a-aM-min¢) + ¢ - min ¢

and therefore ¢ € a-aM-AM+C’. As for the second component in (4.3)

observe that

+

2<a ,0-min ¢> 1" Y

Iaml:1 - v? + 2<aM a-aM-min ¢> | = -|a
H

M)2 M 2
H !

<a? - 42

+

M
28la”| ..
Hl

Thus, for & sufficiently small one can choose ¥ EIR* such that

2¢2<aM,(x-aM min¢>14?‘
H

r = IaMlzl =Y
H

and, since (¢,r) was arbitrary, aM is shown to be a regular point.

G '~~' SRR R S AR O R e T N W Rk AL
S S e P P e S I
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Proof of Theorem 4.2. We apply results on the stability of abstract

optimization problems as summarized in section 3 of [2]. Due to the
fact that aM -+ luN(aM) - zol2 and aM > g(aM,wo) are twice continu-
ously at ag and since the point ag € Qrd is a regular point, it

suffices to establish a lower bound on the second derivative of F at

EM. Let n = uNM(ag;hM) and £ = uNM M(ag;hM,hM) for hM € AM. Then
a a ,a

M.M_M

F M M(ao;h ,h)
a ,a

N, M 2 M, 2
<u(ay) - 2,65 5+ |n]°, - 2A|n"|
0 40 4O !

|v

N, M 2 M2
-luT(ag)-z| glEl 4+ Inl; - 2afn|%),
0’2l o5l o 0 4l

where X < 0 1is the Lagrange multiplier associated with the norm con-
M

straint. In view of (4.1), (4.2), the finite dimensionality of A

-,

and the linear independence of {Hjﬁ(ag)}?gl it follows that there exist

constants c1 and c2 such that

M.M.M N, M M2 M2
F (a;h,h) > -c |ut(a)) - z| [h7]° + e |74,
aM,aM 0 1 0 H0 H1 2 H1

so that for ]uN(ag) - z| sufficiently small there exists a constant
c3 with
M,M M M2
F (ay;h,h7) > ¢ |h | ;
aM,aM 0 3 Hl

from which the result follows [2; Theorem 3.2, 3.3].
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Remark 4.2. If Q <L only and la”| } £ Y is replaced by
H

|aM| o S Y in the definition of Qrd’ then again one can show existence
of solutions of (Pz) and Theorem 4.1 holds with obvious modifications.
The results leading to Theorem 4.2 need yet to be generalized to handle

the nondifferentiable L”-norm constraint.
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5. Numerical Results

In this section we present some results of a numerical experiment to
estimate the coefficient a in (1.1) given observations z of u. To
solve (1.2) with C =1 we consider (2.2) which defines a mapping M

ﬁ(iM) for §M € A, and the finite dimensional minimization problems ;

1

(igo ui(iM)Bi - z)zdx.

(5.1) minimize I
0

For our experiments we imposed no constraints on 5“ GIRM, although
ﬁ(EM) is not well defined for some &1. The basis functions ¢j and
Bi were chosen as linear spline functions with equidistant grid on
(0,1). As data 2z we took the values of a solution of (1.1) by choosing
the coefficient a and the observation z(x) = u(x) = xz(l-x)z, and cal-
culating f = u - (aux)x from it. Using this f we then compute {i
from (2.2) as we solve (5.1). For the minimization the Newton-Raphson
algorithm was used.

In our calculations N = 10 représents the number of subintervals
used in the linear spline approximation for the solution of (1.1). Thus
the dimension of the approximation space for the solution is 11. Further
NBI is the number of subintervals of I that determine the linear spline
approximation of a; the dimension of the approximation space for a

is NBI + 1. A necessary condition for identifiability of EM

is thus
NBI + 1 < 11, see Corollary 2.1. We show calculations for NBI =
4, 5, 6, 8 - 11, for the choice of a(x) =1 + x. In the first five cases

good results are obtained. Note that NBI = 5 and N = 10 is a special

-----------------
--------
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case of Theorem 3.4. In the case NBI = 10, EM is not identifiable by

Theorem 3.3. Numerically this is reflected by the appearance of oscilla-

."

tions as NBI approaches 10 from below, see the graphs for NBI = 9, 10, 11.

The start-up value for the minimization routine was chosen as i = 2.

B8 Sy

We point out that a different scaling of the axes in the various graphs

was utilized. We also show the graphs for uN(aM), when N = 10 and

'

T T
'. . . 0 . -. » - . &,

NBI = 9, 10, 11. The -graphs for the approximating solutions for NBI =

4, 5, 6, 8 are indistinguishable from NBIl = 9,

v
l-.["'y‘.
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FIGURE 1

1D FLOW - NEUMAN B.CS
AeleX, UsXeXe(1.0-X)**2
N=10, NBI=4
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FIGURE 3

1D FLOW - NEUMAN B.C.S
AsleX, UsX*X*(1,0-X)*e2
N=10, NBIw6
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FIGURE 2

1D PLOW - NEUNAN B.C.S
A=1sX, UsXeXe{1.0-X)**2
Ne10, NBI=5
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FIGURE ¢

1D FLOW -~ NEUMAN B.C.S
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Ne10, NBI=8
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FIGURE &
FIGURE §
1D FLOW - NEUNAN B.C.S )
1D FLOW ~ NEUMAN B.C.S A=leX, UsXeXe(1.0)ee
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FIGURE 7
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FIGURE ¢
FIGURE &
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